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SUMMARY

A generalized method of constructing graeco latin square of any odd
order (>- 3) is given. The procedure is also illustrated for constructing all
the distinct graeco latin squaies of order 3.
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1. Introduction

Das and Dey [1] liave presented a method of constnicting a pair of
ortliogonal latin squares of any odd order by developing two initial rows. By
superimposing those orthogonal latin squares one may get tlie graeco latin
squaie. In the present note, a more generalized method ofconstructing graeco
latin squares of any odd order has been presented which enables one to obtain
several graeco latin squares from the given latin square. The results are presented
in Section 2. Further the distinct graeco latin squares of order 3, obtained by
applying the proposed method are also presented.

2. Main Results

Let m (= 2n + 1) be the ntuiiber of symbols coded by (1, 2, ..., m) and
is denoted by the set S = {1, 2, ..., m}. The latin squares are obtained by
generating the initial blocks mod m.

Theorem 2.1 : A graeco latin square (equivalently a pair of orthogonal
latin squares) of order m can be obtained by developing the following two
initial rows.

Ri : i, 12 is ... i,„ mod m

provided (i) i,. ij if k 1

(ii) J'k Ji if k 1
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(iii) ifc + jk = P' k=l,2,...,m (2.2)

where and p are tlie members of the set S.

Proof: By developing, tlie two initial rows given above, one may obtain
two square arrays of order m and are denoted by A and B respectively. The
(k, l)th position of A and B are respectively filled by

aiji = ii + (k - 1) mod m and

b^i = p-il + (k-1) mod m (2.3)

To show that A and B are latin squares and are mutually orthogonal
consider the following :

Let k 1 5^: r s, then we have

aiji = i] + (k-1) mod m

asi = i]+ (s-1) modm . (2.4)

From (2.4), we can clearly show that no two elements in the same row
and in the same cohuim are equal and hence A is a latin square of order m.
Similarly we can show that B is also a latin square of order m.

On superimposing A and B one may get a square array of order m and
is denoted by G. The (k, l)th position of G is obtained as

gkl= (^kl' l^ki) (2-5)

where a^, and b^ as defined in (2.3).

The elements a,^, and b^ are equal if

2i]-p = 0modm (2.6)

But this is true only when i, = p/2. Hence the column in which i, = p/2,
tlie elements a^ and b,^, are equal and not in other columns.

Further we have to show that no two positions of G have been filled
by the same elements.

From the definition of A and B no two elements in the same row and

in the same coliuim are equal. Therefore it is enough to prove that the elements
in different rows and in different columns are not equal.

Let k r and 1s (2.7)
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By the definition of G we have,

8ki = (^ki' + O' - 1)' P - 'i + (k - 1)) mod m and

Srs = = ('s + (f - D. P " + (f " D) mOd m
Let g^, = g^^ It is tnie only if

i]- ig = r - k and i]- i^ = k - r (2.8)

From (2.8) we have

k = r (2.9)

From (2.8)-and (2.9) we have shown that i, - = 0. That is i, = i^^, which
is true only when

l = s (2.10)

From (2.9) and (2.10) we have obtained k = r and 1 = s, which is a
contradiction to the assumption (2.7). Hence, the proof.

Remark 2.1: The tlieorem of Das and Dey [1] is a particular case of tlie
Theorem 2.1 given above, in which i, = 1 - 1, j, = m + 1 - 1 and p = 0.

Remark 2.2: For k r and I ^ s, one can easily show from equation
(2.8) thattlie two elements g^^ andg,^, of a graeco latin square areequal, provided
r - k = k - r. That is 2 (k - r) mod m = 0, which is tnie only when m

is an even number. Hence the proposed method is valid only for the construction
of graeco latin squares of odd order and is not valid for the construction of
graeco latin squares of even orders.

Theorem 2.2: From a given latin square, m distinct graeco latin squaies
can always be obtained.

Proof: Let i^ be the kth element of the. initial block of the given latin
square. From Theorem 2.1 one can easily obtain the graeco latin square with
ktli element of the initial block as (1,^^, j^) such that i^ + mod m = p, where
p takes any value in the set S = {1, 2, ..., m}. Hence the proof.

Theorem 2.3: There always exists ((m + 1)! - m!) distinct graeco latin
squares of order m.

Proof: hel (ij i^ ... i^) be tlie initial row of a latin square of order m.
By j)emiutating the initial row one can obtain ml distinct initial rows which
leads to ml distinct latin squares of order m. By applying the Theorem 2.2
we can always constnict m! x m (= (m + 1)! - m!) graeco latin squares.
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Example

Let m (=3) be the number of symbols, denoted by S = (1, 2, 3). It is
given that m = 3, we can constnict m! = 3! =6 latin squares following
Theorem 2.2 and (m + 1)! - m! = 4! - 3! = 18 graeco latin squares following
Theorem 2.3.

The latin squares are denoted by Li, i = 1, 2, ..., 6 and are given as

Ll=(l 2 3)
L2 = (l 3 2)
L3 = (2 1 3)
L4 = (2 3 1)
L5 = (3 1 2)
L6 = (3 2 1)

as

The graeco latin squares are denoted by Gi, i = 1, 2, ..., 18 and are given

G1 = [ (1, 3) (2,2) (3,1) ] GIO = [ (f. 2) (3,1) (1, 3)]

G2 = [ (l,l)(2,3)(3,2)] Gil = [(2, 3) (3,2) (1,1)]

G3 = [(l,2)(2,l)(3,3)] G12 = I(2,1)(3,3)(1.2),]

G4 = [ (1,3) (3,1) (2,2) ] G13 = [ (3,1) (1, 3) (2,2) ]

G5 = [(l,l)(3,2)(2.3)] G14=[(3,2)(l,l)(2,3)]

G6 = [ (1,2) (3, 3) (2, 1) 1 G15 = [ (3, 3) (1, 2) (2,1) ]

G7 = [ (2,2) (1, 3) (3,1) ] G16 = [ (3,1) (2, 2) (1, 3) ]

G8 = [ (2, 3) (1,1) (3,2) ] G17 = [ (3,2) (2, 3) (1, 1) ]

G9 = [ (2,1) (1,2) (3, 3) ] GIB = [ (3, 3) (2,1) (1,2) ]
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