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SUMMARY

A generalized method of constructing graeco latin square of any odd :
order (>= 3) is given. The procedure is also illustrated for constructing all
the distinct graeco latin squares of order 3. :

Key-words: Orthogonal latin squares, Initial block, Construction

1. Introduction

Das and Dey [1] have presented a method of constructing a pair of
orthogonal latin squares of any odd order by developing two initial rows. By
superimposing those orthogonal latin squares one may get the graeco latin :
square. In the present note, a more generalized method of constructing graeco
latin squares of any odd order has been presented which enables one to obtain
several graeco latin squares from the given latin square. The results are presented
in Section 2. Further the distinct graeco latin squares of order 3, obtained by 1
applying the proposed method are also presented.

2. Main Resulls

Let m (= 2n + 1) be the number of symbols coded by (1, 2, ..., m) and _
is denoted by the set S = {1, 2, ..., m}. The latin squares are obtained by ’ :
generating the initial blocks mod m. |

Theorem 2.1 : A"graeco latin square (equivalently a pair of orthogonal
~ latin squares) of order m can be obtained by developing the following two
initial rows.
R, :ijipiz...iy mod m
R, :]j Jpj3 e iy mod m . 2.0

provided (1) i # i if k # 1
i) je#g if k=1
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(iif) ik+j=p k=12,.m S : (2.2)
where i, j and p are the members of the set'S. '

Proof: By developing, the two initial rows given above. one may obtain
two square arrays of order m and are denoted by A and B respectively. The
(k, Dth position of A and B are respectively filled by

ay; = iy + (k- 1) mod m and '
by =p—ij+(k-1)modm _ (2.3)

To show that A and B are latin squares and are mutually orlhogonal
consider the following :

“Letk 21 # r # s, then we have
a =i+ (k- 1) mod m
A, =i+ (k-1)modm
ag=ij+(s-1)modm o (2.4)

From (2.4), we can clearly show that no two elements in the same row
and in the same column are equal and hence A is a latin. square of order m.
Similarly’we can show .that B is also a latin square of order m, )

‘On superimposing A and B one may get a square array of order m and
is deuoted by G. The (k, Dth position of G is obtamed as '

81 = (ay, by) : : @25)
where a,, and b,, as defined in (2.3).
The elements a, and b, are equal if
2ij—-p=0modm - ' | 4 (2.6

But this is true only when i, = p/2. Hence the column in which i, = p/2,
the elements a,, and b, are equal and not in other. columns.

Further we have to show that no two posmons of G have been filled
by the same elements. :

From the definition of A and B no two elements in the same row and
in the same column are equal. Therefore. it is enough to prove that the elements
in different rows and in different columns are not equal.

Let k#r and 1#s ' (2.7)
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By the definition of G we have,
g, = (@, b) =G +&-1),p-i+ (k- 1) mod m and
g, =@,b)=(=G+ @ -1),p-i + (r-1)) mod m
Let g, = g It is true only if
ij—i =r—kandij—ij=k-r ' ' (2.8)
From (2.8). we have
k=r (2.9)

" From (2.8).and (2.9) we have shown that 'il -i = 0. That is i, = i, which
is true only when

1=s . (2.10)

From (2.9) and (2.10) we have obtained k = r and 1 = s, which is a
contradiction to the assumption (2.7). Hence, the proof.

Remark 2.1: The theorem of Das and Dey [1] is a particular case of the
Theorem 2.1 given above, in which i, =1~ 1,j=m+ 1 -1and p = 0.

Remark 2.2: For k # r and 1 # s, one can easily show from equation
(2.8) that the two elements g_-and g, of a graeco latin square are equal, provided
r—k=%k—r Thatis 2 (k — r) mod m = 0O, which is true only when m
is an even number. Hence the proposed method is valid only for the construction
of graeco latin squares of odd order and is not valid for the construction of
graeco latin squares of even orders. ‘

Theorem 2.2: From a given latin square, m distinct graeco latin squares
can always be obtained.

Proof: Let i, be the kth element of the initial block of ‘the given latin
square. From Theorem 2.1 one can easily obtain the graeco latin square with
kth element of the initial block as (i, j,) such that i + j, mod m = p, where
p takes any value in the set S = (1, 2, .., m}). Hence the proof.

Theorem 2.3: There always exists ((m + 1)! - m!) distinct graeco latin
squares of order m.

Proof: Let (i, i, ... i) be the initial row of a latin square of order m.
By permutating the initial row one can obtain ml distinct initial rows which
leads to ml distinct latin squares of order m. By applying the Theorem 2.2
we can always construct m! x m (= (im + 1)! — m!) graeco latin squares.
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Example

Let m (=3) be the number of symbols, denoted by S = (1, 2, 3). It is
given that m = 3, we can construct m! = 3! =6 latin squares following
Theorem 22and m+ 1)} - m! = 4! — 3! =18 graeco latin squares following
Theorem 2.3.

The latin squares are denoted by Li, i = 1, 2, ..., 6 and are given as

Ll=(1 2 3)
L2=(1 3 2)
L3=2 1 3)
L4=(2 3 1)
L5=3 1 2)
L6=3 2 1)

The graeco latin squares are denoted by Gi, i =1, 2, ..., 18 and are given
as :

G10=|[ (2, 2)3,1)(1,3)]
Gl1={(2,3)3,2) (1,1 ]

Gl=[(1,3)2,2)(3,1)]
G2= [_(1? 1)2,3)3,2)]

G3=[(1,2)(2,1)(3,3)]
G4=[(1,3)3,1)(Z2,2)]
GS=[(1,1)3,2 23]
G6=[(1,23,3) 2 1]
G7={(2,2)(1,3)3,1)]
GB=[(2,3)(1,1)(3,2)]
GI=121)(1,2)G,3)]

G12=[(2,1)(3,3)(1,2)]
G13={G,1H(1,3)22]
G14=[(3,2(1,1) 2,3)]
G15=[(3,3)(1,2) (2, 1)]
G16=[(3,1)(2,2)(1,3) ]
G17=[(3,2(2,3)(1, 1]
G18=[(3,32,1(1,2]
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